Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Isopropylbenzamide

Erik M. van Oosten, ${ }^{\text {a }}$ Alan J. Lough ${ }^{\text {a }}$ and Neil Vasdev ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 3H6, and ${ }^{\text {b }}$ PET Centre, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
Correspondence e-mail: alough@chem.utoronto.ca

Received 29 April 2008; accepted 30 April 2008
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.058 ; w R$ factor $=0.148$; data-to-parameter ratio $=7.8$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$, the dihedral angle between the amide group and the phenyl ring is $30.0(3)^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into one-dimensional chains along the a axis.

Related literature

For related literature, see: Clayden et al. (2006); Kopka et al. (2005); Smart (2001); Van Waarde et al. (2004); Stephenson, Wilson et al. (2008); Stephenson, van Oosten et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$
$M_{r}=163.21$
Monoclinic, $P 2_{1}$
$a=5.0093$ (7) \AA
$b=10.1250(13) \AA$
$c=9.6714$ (14) \AA
$\beta=104.133$ (7) ${ }^{\circ}$

Data collection

Bruker Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SORTAV; Blessing 1995)
$T_{\text {min }}=0.954, T_{\max }=0.996$
$V=475.68(11) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=150$ (1) K
$0.14 \times 0.13 \times 0.08 \mathrm{~mm}$

2462 measured reflections 887 independent reflections 621 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.061$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057 \quad H$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.148 \quad$ independent and constrained
$S=1.06$ refinement
887 reflections
114 parameters
$\Delta \rho_{\max }=0.18 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

1 restraint

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(5)$	$2.10(5)$	$2.890(5)$	$160(5)$

Symmetry code: (i) $x-1, y, z$.
Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors thank Dr Karin A. Stephenson, Dr Andrei K. Yudin and Dr Alan A. Wilson for helpful discussions. We thank Dr Sylvain Houle for allowing the CAMH PET Centre facilities to be used for this research. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes for Health Research in the form of a Collaborative Health Research Projects Grant (CHRPJ 322787-06).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2729).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Clayden, J., Stimson, C. C. \& Keenan, M. (2006). Chem. Commun. 13, $1393-$ 1394.

Kopka, K., Kaw, M. P., Breyholz, H. J., Faust, A., Hoeltke, C., Riemann, B., Schober, O., Schaefers, M. \& Wagner, S. (2005). Curr. Med. Chem. 12, 20572074.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smart, B. E. (2001). J. Fluorine Chem. 109, 3-11.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stephenson, K. A., van Oosten, E. M., Wilson, A. A., Meyer, J. H., Houle, S. \& Vasdev, N. (2008). Neurochem. Int. Accepted.
Stephenson, K. A., Wilson, A. A., Meyer, J. H., Houle, S. \& Vasdev, N. (2008). J. Med. Chem. In the press.

Van Waarde, A., Vaalburg, W., Doze, P., Bosker, F. J. \& Elsinga, P. H. (2004). Curr. Pharm. Des. 10, 1519-1536.

supplementary materials

Acta Cryst. (2008). E64, o1005 [doi:10.1107/S1600536808012804]

N-Isopropylbenzamide

E. M. van Oosten, A. J. Lough and N. Vasdev

Comment

The isopropylamine moiety is a common structural feature in many pharmaceutical compounds, in particular among β-adrenergic receptor antagonists (β-blockers) (Van Waarde et al., 2004; Kopka et al., 2005). Recent work in our laboratory (Stephenson, Wilson et al., 2008; Stephenson, van Oosten et al., 2008) and others (Van Waarde et al., 2004; Kopka et al., 2005) has focused on developing β-blockers labeled with the positron emitting isotope fluorine-18 $\left(\mathrm{t}_{1 / 2}=109.7 \mathrm{~min}\right)$ at the isopropyl moiety for medical imaging with positron emission tomography. It is established that substitution of fluorine into a drug often enhances its biological properties (Smart, 2001). Our goal is to structurally characterize the isopropylamine group for comparison with fluorinated analogs developed in our laboratory. Herein we report the single-crystal X-ray structure of the title compound, (I), (Fig. 1).

The dihedral angle between the essentially planar set of atoms C7/O1/N1/C8 [r.m.s. deviation $0.006 \AA$] and the benzene ring (C1-C6) in (I) is $30.0(3)^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into one-dimensional chains along the a axis (Table 1, Fig. 2).

Experimental

N-Isopropylbenzamide was made according to a literature procedure (Clayden et al., 2006), with minor modifications. Benzoyl chloride $(0.825 \mathrm{ml}, 7.11 \mathrm{mmol})$ was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{ml}, 0.4 \mathrm{M})$ under nitrogen. The mixture was cooled in an ice bath to 273 K and stirred for 10 min . Isopropylamine ($1.8 \mathrm{ml}, 21.33 \mathrm{mmol}$) was added dropwise. Upon completion of this addition the ice bath was removed and the reaction mixture was stirred at room temperature for 1.5 h . When the starting material was consumed (monitored by TLC) the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ $\times 50 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$ followed by brine $(2 \times 100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. No further purification was necessary. Colourless blocks of (I) were obtained by slow evaporation of a solution of the title compound in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \mathrm{d}=7.78-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{br}, 1 \mathrm{H}), 4.37-4.18(\mathrm{~m}, 1 \mathrm{H}), 1.25$ $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \mathrm{d}=166.9,135.2$, 131.5, 128.7, 127.0, 42.1, 23.1.

Refinement

In the absence of significant anamlous dispersion effects, Friedel pairs were merged before refinement. The H atoms bonded to C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $0.98 \AA$ (methyl). They were included in the refinement in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. The position of the H atom bonded to the N atom was refined independently with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

supplementary materials

Figures

Fig. 1. The molecular structure of (I) showing 30\% probability displacement ellipsoids (arbitrary spheres for H atoms).

N-Isopropylbenzamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$
$M_{r}=163.21$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=5.0093$ (7) \AA
$b=10.1250(13) \AA$
$c=9.6714(14) \AA$
$\beta=104.133(7)^{\circ}$
$V=475.68(11) \AA^{3}$
$Z=2$
$F_{000}=176$
$D_{\mathrm{x}}=1.140 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 2462 reflections
$\theta=3.0-25.0^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, colourless
$0.14 \times 0.13 \times 0.08 \mathrm{~mm}$

887 independent reflections
621 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-12 \rightarrow 10$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.148$
$S=1.06$
887 reflections
114 parameters
1 restraint

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0784 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.6751(6)$	$0.1703(3)$	$0.8045(3)$	$0.0424(8)$
N1	$0.2696(8)$	$0.1717(4)$	$0.8673(4)$	$0.0411(10)$
H1N	$0.103(11)$	$0.188(5)$	$0.839(5)$	0.049^{*}
C1	$0.3226(9)$	$0.3127(4)$	$0.6749(5)$	$0.0350(11)$
C2	$0.4247(10)$	$0.3165(5)$	$0.5544(5)$	$0.0452(13)$
H2A	0.5601	0.2545	0.5432	0.054^{*}
C3	$0.3286(11)$	$0.4116(6)$	$0.4493(5)$	$0.0535(14)$
H3A	0.3957	0.4126	0.3655	0.064^{*}
C4	$0.1377(10)$	$0.5034(5)$	$0.4666(6)$	$0.0516(14)$
H4A	0.0734	0.5682	0.3951	0.062^{*}
C5	$0.0391(11)$	$0.5014(5)$	$0.5883(6)$	$0.0523(14)$
H5A	-0.0912	0.5656	0.6010	0.063^{*}
C6	$0.1296(9)$	$0.4064(5)$	$0.6915(5)$	$0.0451(13)$
H6A	0.0597	0.4051	0.7744	0.054^{*}
C7	$0.4356(8)$	$0.2117(4)$	$0.7864(4)$	$0.0362(12)$
C8	$0.3461(10)$	$0.0743(5)$	$0.9808(5)$	$0.0474(13)$

H8A	0.5489	0.0586	0.9996	0.057^{*}
C9	$0.1984(13)$	$-0.0561(5)$	$0.9351(6)$	$0.0648(16)$
H9A	0.2525	-0.0903	0.8512	0.097^{*}
H9B	-0.0011	-0.0417	0.9116	0.097^{*}
H9C	0.2488	-0.1200	1.0132	0.097^{*}
C10	$0.2833(11)$	$0.1271(6)$	$1.1160(5)$	$0.0556(15)$
H10A	0.3743	0.2126	1.1400	0.083^{*}
H10B	0.3510	0.0647	1.1942	0.083^{*}
H10C	0.0839	0.1380	1.1013	0.083^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0319(17)$	$0.0442(18)$	$0.0515(17)$	$0.0024(15)$	$0.0112(13)$	$0.0032(16)$
N1	$0.0326(19)$	$0.046(2)$	$0.047(2)$	$0.003(2)$	$0.0149(18)$	$0.012(2)$
C1	$0.033(2)$	$0.035(2)$	$0.039(3)$	$-0.006(2)$	$0.012(2)$	$0.000(2)$
C2	$0.049(3)$	$0.044(3)$	$0.046(3)$	$0.001(2)$	$0.019(2)$	$0.003(2)$
C3	$0.057(3)$	$0.061(3)$	$0.046(3)$	$-0.003(3)$	$0.019(3)$	$0.012(3)$
C4	$0.049(3)$	$0.051(3)$	$0.050(3)$	$-0.002(3)$	$0.004(3)$	$0.020(3)$
C5	$0.053(3)$	$0.040(3)$	$0.066(3)$	$0.007(3)$	$0.017(3)$	$0.013(3)$
C6	$0.046(3)$	$0.042(3)$	$0.051(3)$	$0.003(2)$	$0.017(2)$	$0.005(3)$
C7	$0.035(3)$	$0.034(3)$	$0.037(2)$	$-0.004(2)$	$0.005(2)$	$-0.008(2)$
C8	$0.041(3)$	$0.054(3)$	$0.048(3)$	$0.012(3)$	$0.012(2)$	$0.017(3)$
C9	$0.085(4)$	$0.043(3)$	$0.064(3)$	$0.010(3)$	$0.014(3)$	$0.012(3)$
C10	$0.062(3)$	$0.062(4)$	$0.044(3)$	$-0.001(3)$	$0.015(2)$	$0.012(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.242(5)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.337(6)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.455(6)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.83(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(6)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.392(6)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.493(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.398(8)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.373(7)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.384(7)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9500
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$124.0(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$118(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$117(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.2(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$118.3(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$122.4(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.0(5)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	$\mathrm{C} 10-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.3(5)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.8(5)$	$\mathrm{C} 8-\mathrm{C}-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.1	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.1	$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.2(5)$	$\mathrm{C} 8-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.9	$\mathrm{C} 8-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.9	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.5(4)$	$\mathrm{C} 8-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.8	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.8	$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.83(5)$	$2.10(5)$	$2.890(5)$	$160(5)$

Symmetry codes: (i) $x-1, y, z$.
supplementary materials

Fig. 1

Fig. 2

